Coatings Industry News

Main News Page


New Tall Turbines Highlight Drive for Size

Friday, August 11, 2017

Comment | More

Wind energy giant Siemens Gamesa announced Tuesday (Aug. 8) that it has successfully installed the tallest wind turbines in Asia, at a wind farm in Thailand, underscoring an industry trend toward larger turbine structures.

Siemens Gamesa says the new turbines, with 56-meter (183-foot) blades, sit atop 153-meter-tall towers, giving them a total height of 210 meters. Last year, wind energy firm Nordex installed the world’s largest turbines in Hausbay, Germany, with 65-meter blades atop 164-meter towers, for a total height of just under 230 meters.

Wind turbine
Peter Rood, CC BY-NC 2.0, via Flickr

Siemens Gamesa announced that its new wind farm installation in Thailand features the tallest turbines in Asia. (Pictured: an older Gamesa 2.0 megawatt turbine model.)

The Siemens Gamesa project, in the Nakhon Ratchasima province of Thailand, consists of 33 turbines, in a wind farm owned by engineering company Gunkul and built by PowerChina ZhongNan. The turbines themselves are Siemens Gamesa’s G114-2.0 and G114-2.1 models, with an overall capacity of 67.5 megawatts. The wind farm is expected to be commissioned later this year.

The Nordex farm in Germany consists of prestressed concrete towers made by Max Bögl; Siemens Gamesa did not disclose the materials its new tall towers are made of, and did not immediately respond Thursday (Aug. 10) to a request for material details.

According to environmental declarations for a separate wind project using the company’s G114-2.0 turbines, the massive blades themselves are made of fiberglass reinforced with polyester resin. (Smaller blades in the same product line are made from pre-impregnated epoxy glass fiber.)

The Drive for Bigger Turbines

As NBC News recently reported, the wind energy industry has seen a move in recent years toward taller towers and bigger turbines. Turbines situated at greater heights can take advantage of stronger winds at altitude, and with longer blades, the turbines would be more powerful and more efficient.

The SUMR project, headed up by engineers at the University of Virginia and Sandia National Laboratories, aims to develop 50-megawatt turbines for offshore use; the turbines would stand at 1,650 feet high. The project is funded by the U.S. Department of Energy.

SUMR turbine model
Randy Montoya / Sandia Lab

The SUMR project aims to build turbines large enough to generate 50 megawatts; the offshore turbines would have to be engineered to flex and withstand hurricane-force winds. Pictured above is researcher Todd Griffith.

Sandia previously developed prototype 13-megawatt turbines with 328-foot-long blades, but success for SUMR would mean a turbine that’s big enough to generate more than five times the power that the largest commercially available turbine does today.

Offshore Wind-Resistance Standards

In order to be viable, the huge SUMR turbines must be flexible, withstanding hurricane-force winds in the storm-prone Atlantic. That’s a problem that even smaller turbines face, and a new study published in Geophysical Research Letters suggests that current standards for wind resistance in offshore towers and turbines don’t account for strong hurricanes, and without taking the strongest winds into consideration, offshore wind farms could be vulnerable to catastrophic damage.

The authors, led by the University of Colorado’s Rochelle Worsnop, used computer modelling to conclude that wind gusts at the eyewall of a Category 5 hurricane can reach as high as 100 meters per second (nearly 225 mph), which far exceeds current standards for offshore wind turbines, which are required to withstand winds of up to 70 meters per second.

A Category 5 storm is rare, and the eyewall is a small part of a hurricane system, but the new research could encourage turbine manufacturers to consider designing for higher winds, and could factor into the location of some offshore arrays.

   

Tagged categories: AS; Asia Pacific; EMEA (Europe, Middle East and Africa); EU; Latin America; NA; North America; Offshore; Power; Program/Project Management; SA; Wind Farm; Wind Towers

Comment Join the Conversation:

Sign in to our community to add your comments.


Advertisements
 
Fischer Technology Inc.

 
SAFE Systems, Inc.

 
KTA-Tator, Inc. - Corporate Office

 
Safety Lamp of Houston, Inc.

 
DeFelsko Corporation

 
NLB Corporation

 
ABKaelin, LLC

 
Modern Safety Techniques

 
HoldTight Solutions Inc.

 
WEFTEC Show

 
 
 

Technology Publishing Co., 1501 Reedsdale Street, Suite 2008, Pittsburgh, PA 15233

TEL 1-412-431-8300  • FAX  1-412-431-5428  •  EMAIL webmaster@paintsquare.com


The Technology Publishing Network

PaintSquare the Journal of Protective Coatings & Linings Paint BidTracker

 
EXPLORE:      JPCL   |   PaintSquare News   |   Interact   |   Buying Guides   |   Webinars   |   Resources   |   Classifieds
REGISTER AND SUBSCRIBE:      Free PaintSquare Registration   |   Subscribe to JPCL   |   Subscribe to PaintSquare News
MORE:      About PaintSquare.com   |   Privacy Policy   |   Terms & Conditions   |   Support   |   Site Map   |   Search   |   Contact Us