It is widely accepted that moisture vapor transmission through concrete floor slabs can adversely affect the performance of coatings that are applied to the concrete slab. Before the early 1990s, it was common to check for moisture vapor transmission (MVT) through a concrete slab using either the plastic sheet method or any of a number of contact probes that were available for testing moisture. The plastic sheet method was strictly a qualitative test. A plastic sheet was taped to the bare floor, and the underside of the plastic sheet was later examined to determine whether moisture had condensed on the sheet. If moisture was found on the back of the sheet, it was assumed that the MVT through the concrete was too great for the successful application of coatings to the concrete slab.

The moisture contact probes usually work by measuring the conductivity between two points in the concrete. The probe correlated the conductivity of the concrete to the moisture content and typically had a range that was considered safe for coating.

Another MVT test was commonly used in the resilient flooring industry. This method was known as the calcium chloride test. The test, believed to have originated in the 1950s, was designed to quantitatively determine the rate of MVT through a concrete floor slab. ASTM International officially approved a calcium chloride test method in 1998 under the designation ASTM F 1869, "Measuring Moisture Vapor Emissions Rate of Concrete Subfloor Using..."
Anhydrous Calcium Chloride."
The calcium chloride MVT test has steadily gained acceptance in the floor coating industry. This article discusses variables that affect the results of MVT testing with calcium chloride, and it presents the results of testing designed to measure the affects of certain environmental parameters on the results of calcium chloride MVT testing.

BACKGROUND
In the calcium chloride test method, a dish of dried anhydrous calcium chloride is weighed and placed on the floor where the moisture vapor transmission rate is to be measured. The method requires that if a floor coating has already been applied to the concrete, the coating must be removed from an area at least 20 in. x 20 in. A sealant is then applied to the flange of a transparent plastic covering, and the covering is placed over the calcium chloride dish. The dish is allowed to remain for 60 to 72 hours. The dish is then removed and re-weighed. The weight gain is assumed to be the result of moisture absorbed by the calcium chloride.

The MVT rate is then calculated based on the area under the transparent plastic covering (minus the area of the dish), the weight gain of the calcium chloride, and the exposure time. The MVT rate is expressed in pounds per 1,000 ft² per 24 hours. It is commonly held that the maximum MVT rate acceptable for application of coatings is 3 lb/1,000 sq ft/per 24 hours, although permissible rates can vary, depending on the coating manufacturer’s specific requirements.

CALCIUM CHLORIDE TEST VARIABLES
The calcium chloride test is based on the assumption that moisture absorbed by anhydrous calcium chloride in a dish on the surface of the concrete slab originated either under a concrete floor slab and migrated through the slab to the surface from directly below, or within the concrete slab itself. In reality, moisture vapor will travel randomly in any direction. As a result, moisture vapor in the air above a concrete floor can travel into a concrete slab. Once moisture is in the concrete, it is reasonable to expect that the moisture can then travel horizontally. Given this expectation, one would further expect that some moisture absorbed by the calcium chloride originated in the air surrounding the transparent plastic covering the dish. The amount of moisture absorbed would increase as temperature and relative humidity increase.

Porosity of the concrete near the surface would also affect the absorption rate, because migration through the concrete would increase as the porosity increased. ASTM Standard Test Method F 1869 provides no limitations on the temperature and relative humidity of the environment surrounding the calcium chloride test apparatus if the conditions approximate the normal operating service environment. The test method simply suggests that the test site should be at the same temperature and humidity expected during normal use. If the temperature and humidity cannot be controlled to the range expected during normal use, the test method requires that the temperature be 65 F to 85 F, and the relative humidity should be 40% to 60%.

By Rick A. Huntley, KTA-Tator, Inc., Pittsburgh, Pennsylvania
Finally, epoxy floor coatings can be high-performance, eco-friendly and cost less . . . making everybody happy.

New Anquamine® 721 and 731 epoxy curing agents deliver all three. Coatings formulated with Anquamine 721 or 731 curatives deliver tough, long-lasting finishes and can save you up to 20% compared to traditional solvent-free coatings. Because they are waterborne, coatings are easy to apply, safe to handle, and low-to no–VOC.

High performance, real economy and a clean environment. Anquamine 721 and 731 curatives are sure to make your day too. Call 1-800-345-3148 or visit www.airproducts.com/happy for a free sample.
When an impermeable coating is applied to a concrete floor, no significant amount of moisture can migrate from the concrete to the air above, nor from the air above to the concrete. The moisture, though, can migrate horizontally under the floor coating. The calcium chloride test method allows testing to be conducted on previously coated floors in areas where a minimum 20 in. x 20 in. square of coating has been removed. Because the moisture in the surrounding areas around the 20 in. x 20 in. square of removed coating cannot migrate vertically through the impermeable coating, it is a reasonable assumption that some quantity of the moisture will migrate horizontally into the area where the coating has been removed, creating a kind of “chimney effect” (a type of moisture migration, defined below) and possibly biasing the results of the calcium chloride test.

MVT TESTING
In order to determine the effect of the various variables on the calcium chloride moisture test results, two test protocols were developed. The first test protocol was developed to assess the chimney effect, or moisture migration from areas of the concrete slab covered by an impermeable floor coating to areas where the floor coating has been removed to perform MVT testing.

The testing was conducted in a large facility that had been recently constructed with concrete floors and a self-leveling 100% solids epoxy floor coating system. The facility was near completion, and the HVAC system was operational. Four test locations were chosen within the facility. In each of the four test areas, the self-leveling epoxy floor coating was removed from a 24 in. x 24 in. area, which is somewhat larger than the 20 in. x 20 in. minimum area required by the test method.

Approximately 24 hours after the coating was removed, a pre-weighed dish of calcium chloride was placed in each test area and covered with a transparent plastic covering. The transparent plastic covering had a sealant applied around the flange and the sealant was firmly pressed into the concrete to form an airtight seal. After approximately 70.5 hours, the plastic covering was removed, and the plastic dish with the calcium chloride was reweighed. After completion of the calcium chloride testing, all of the floor coating was removed from the facility due to technical problems with the coating (not necessarily associated with excessive moisture). The temperature and humidity within the facility were maintained at approximately the same level by the HVAC system. One week after the floor coating was removed, the calcium chloride test was again performed in the same areas at which it had previously been performed. The calcium chloride dishes were allowed to remain in place for 69 hours. The dishes were then removed and reweighed, and the MVT rate was calculated in accordance with the requirements of ASTM F 1869. Table 1 compares the results of the calcium chloride moisture testing on the floor that had contact coating with a 24 in. x 24 in. area removed, and the calcium chloride moisture testing performed where no coating remained on the floor.

The results in Table 1 demonstrate that there was a significant difference between the MVT rate measured in areas where a 24 in. x 24 in. square of coating was removed, and the same area after all of the coating was removed.

<table>
<thead>
<tr>
<th>Test Area</th>
<th>Full Coating Removal MVT (lb/1000 sq ft/24 hours)</th>
<th>24” X 24” Coating Removal MVT (lb/1000 sq ft/24 hours)</th>
<th>% Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area 1</td>
<td>1.32</td>
<td>3.04</td>
<td>130%</td>
</tr>
<tr>
<td>Area 2</td>
<td>1.82</td>
<td>3.63</td>
<td>99%</td>
</tr>
<tr>
<td>Area 3</td>
<td>3.97</td>
<td>10.91</td>
<td>175%</td>
</tr>
<tr>
<td>Area 4</td>
<td>2.48</td>
<td>4.48</td>
<td>95%</td>
</tr>
</tbody>
</table>

Table 1: Moisture Testing Before and After Full Coating System Removal

Concrete test panel in an environmental chamber

www.paintsquare.com
The Megaseal Flooring Systems offer a broad array of high performance coatings and finishes for use in the most demanding floor applications. MegaSeal Flooring Systems are professional grade. These tough working products are easy to install and provide superior protection for both new construction and renovation projects.

Contact a PPG Coatings Specialist or visit online for more information and a system selection guide.

1-800-441-9695 | www.ppgmegaseal.com

Visit us at The World of Concrete Booth S13504
When you need Climate Control for your coating projects, Munters makes it a sure thing. Here’s why:

- Munters invented the idea of climate control in coating and is the oldest and largest company in the business.
- Munters has the most experienced people in the climate control industry. We’ve done 15,000 successful coating projects and our company is ISO Certified.
- Munters has the largest fleet of climate control equipment in the world. We will spec equipment that will meet your needs, but not waste your money.

Munters is the only company in the world to offer ExactAire®. Using the Internet, ExactAire gives you real-time information on the conditions inside your tank. It also alerts you to equipment or power failures, and gives you time to react to any deteriorating condition. At the end of the project, ExactAire provides complete reports, showing how conditions were controlled.

With 30 offices, Munters has an expert in climate control near you. So, call today for 24-hour service and be sure about climate control.

Munters Corporation — Moisture Control Services
79 Monroe Street, PO Box 640, Amesbury, MA 01913-0640, 1-800-MUNTERS, www.munters.us

Munters. Always by your side.
The second test protocol involved measuring the MVT rate using the calcium chloride test on concrete test panels. Two sets of concrete test panels were used. The first set was 16 in. x 16 in. x 2 in. commercially available concrete paving blocks. The second set was 12 in. x 12 in. x 1.5 in. poured concrete panels of normal weight. All of the panels were completely sealed on the bottom side and on the edges with approximately 15 mils of an amine-cured epoxy. The panels were sealed to prevent moisture migration through the bottom and the sides. The tops of the panels were lightly abrasive blast cleaned to remove laitance, but left uncoated. The design of the panels allowed for moisture migration through the tops and the sides. The calcium chloride test was performed. Once the calcium chloride test apparatus was attached to the panels, the panels were placed in an environmental chamber. The temperature and humidity were varied to determine their effect on the amount of moisture that could migrate through the top of the test panels.

The first testing was performed on the commercially available concrete paving blocks. Although the blocks appeared to be normal weight for concrete, there was some visible porosity in the surface. The testing has shown that measured moisture vapor transmission rates obtained from testing on a large area of bare concrete can be less than half the measured moisture vapor transmission rate in the same area when only a 24 in. x 24 in. area of coating has been removed. The testing has shown that measured moisture vapor transmission rates obtained from testing on a large area of the floor coating has been removed. The testing has shown that measured moisture vapor transmission rates obtained from testing on a large area of the floor coating has been removed.

Table 2: Moisture Vapor Transmission Testing on Concrete Paving Blocks

<table>
<thead>
<tr>
<th>Test Panel</th>
<th>Temperature (°F)</th>
<th>Relative Humidity (%)</th>
<th>MVT (lb/1000 sq ft/24 hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel 1</td>
<td>90</td>
<td>95</td>
<td>19.39</td>
</tr>
<tr>
<td>Panel 2</td>
<td>75</td>
<td>50</td>
<td>14.86</td>
</tr>
</tbody>
</table>

Table 3: Moisture Vapor Transmission Testing on Poured Concrete Panels

<table>
<thead>
<tr>
<th>Test Panel</th>
<th>Temperature (°F)</th>
<th>Relative Humidity (%)</th>
<th>MVT (lb/1000 sq ft/24 hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel 3</td>
<td>75</td>
<td>50</td>
<td>3.22</td>
</tr>
<tr>
<td>Panel 4</td>
<td>90</td>
<td>95</td>
<td>5.12</td>
</tr>
<tr>
<td>Panel 5*</td>
<td>75</td>
<td>50</td>
<td>3.01</td>
</tr>
<tr>
<td>Panel 6</td>
<td>55</td>
<td>70</td>
<td>1.82</td>
</tr>
<tr>
<td>Panel 7</td>
<td>75</td>
<td>70</td>
<td>3.47</td>
</tr>
</tbody>
</table>

*Testing repeated at same temperature and humidity as Panel 3

The second test protocol involved measuring the MVT rate using the calcium chloride test on concrete test panels. Two sets of concrete test panels were used. The first set was 16 in. x 16 in. x 2 in. commercially available concrete paving blocks. The second set was 12 in. x 12 in. x 1.5 in. poured concrete panels of normal weight. All of the panels were completely sealed on the bottom side and on the edges with approximately 15 mils of an amine-cured epoxy. The panels were sealed to prevent moisture migration through the bottoms and the sides. The tops of the panels were lightly abrasive blast cleaned to remove laitance, but left uncoated. The design of the panels allowed for moisture migration through the tops and the sides. The calcium chloride test was performed. Once the calcium chloride test apparatus was attached to the panels, the panels were placed in an environmental chamber. The temperature and humidity were varied to determine their effect on the amount of moisture that could migrate through the top of the test panels.

The first testing was performed on the commercially available concrete paving blocks. Although the blocks appeared to be normal weight for concrete, there was some visible porosity in the surface. Table 2 presents the results of the MVT testing on the concrete paving blocks. As can be seen from Table 2, the MVT rate through the top of the relatively porous concrete paving block was considerable, leading to MVT rate measurements much greater than 3.0 lb/1000 sq ft/24 hours, the maximum level generally considered acceptable for coating application to a concrete floor. These high MVT rate measurements were observed despite the fact that the backs of the panels were completely sealed, and no significant moisture vapor could have migrated through the concrete from the bottom.

The rest of the testing was performed on 12 in. x 12 in. poured concrete panels of normal weight. All the panels were coated on the top and sides, and the top of the panels were lightly abrasive blast cleaned to remove laitance. Table 3 presents the findings from MVT rate testing on the poured concrete test panels of normal weight. As can be seen from Table 3, the measured MVT varied considerably and appeared to increase significantly with increases in humidity and temperature. It is interesting to note that the measured values were all greater than the maximum value of 3.0 lb/1000 sq ft/24 hours considered acceptable for application of floor coatings.

CONCLUSIONS

The calcium chloride MVT testing performed in this research indicate that the results are significantly affected by the humidity and temperature of the surrounding air, and they vary considerably depending on whether the testing is performed on a bare concrete floor, or on a coated floor where a small area of the floor coating has been removed. The testing has shown that measured moisture vapor transmission rates obtained from testing on a large area of bare concrete can be less than half the measured moisture vapor transmission rate in the same area when only a 24 in. x 24 in. area of coating has been removed. Moisture from surrounding areas of the concrete slab likely migrates horizontally through the slab and to the calcium chloride moisture testing site.

Based on these results, it is likely that the measured MVT rate obtained using the calcium chloride test before
application of a floor coating will be considerably lower than the MVT rate obtained after the coating has been installed and sections of the coating are removed for testing. Thus, unfortunately, when assessing a floor coating failure, you may not be able to determine what the MVT rate was—as measured by the calcium test—before the coating was installed. So knowing whether the coating was applied over “dry” concrete might not be possible.

The research also suggests that much of the moisture detected by the calcium chloride test did not migrate through the slab but instead migrated into the concrete from the surrounding air and migrated around the flange of the plastic cover. The research further revealed that the amount of moisture that enters into the concrete from the surrounding air increases with increased temperature and humidity. The moisture migration through the top of the slab is sufficient to produce MVT test results higher than the maximum of 3.0 lb/1000 sq ft/24 hours recommended by many floor coating manufacturers. Under higher humidity and temperature conditions, MVT test results may unnecessarily delay application of a floor coating, even when very little moisture vapor is migrating through the slab. Under these conditions, the plastic sheet method or relative humidity testing may be more appropriate.

Rick Huntley is the manager of Consulting Services for KTA-Tator, Inc., where he has been employed for 18 years. He is certified by SSPC as a Protective Coatings Specialist, and is a certified NACE International Coatings Inspector. His work with KTA includes coating failure analysis, specification preparation, and coating project management. He earned a Bachelor of Science degree from Washington State University.
Futura Coatings, protecting your assets in the toughest environments.

Established in 1978, Futura specializes in developing and manufacturing high performance coatings, elastomers and structural resins. Our broad line includes polyurethanes, polyureas, epoxies, epoxy novolacs and vinyl esters. Futura is your source for a complete selection of primers, 100% solids VOC compliant systems, solvent and water based systems as well as a wide variety of specialty coatings - many of which are engineered to meet very specific customer applications.

Futura Coatings is, without question, the most diversified company in the specialty coatings and systems business.