Passive Fire Protection Application with Plural-Component Equipment

By Murphy Mahaffey, WIWA Wilhelm Wagner GmbH & Co. KG

Passive Fire Protection, or PFP, is a term that is frequently used in our industry today for describing technologies that delay or mitigate damage by fire to allow more time for protecting human life. PFP technologies operate without human intervention, focus on compartmentalization (preventing the spread of fire), and maintain the structural integrity of the vessel or building for a longer period of time—as opposed to Active Protection, which focuses on detection and suppression, including alarms and sprinkler systems. PFP systems include intumescents, cementitious materials, and proprietary boards or sheets. Each of these systems is engineered to protect the substrate.

This article will discuss aspects of intumescent plural-component PFP material application, including proper training, equipment required, and job profiles.

Intumescent PFP

Intumescent PFP materials are comprised of a resin matrix that contains a blend of thermally active chemicals formulated for fireproofing. An intumescent coating will expand (intumesce) 5 to 10 times its original thickness when exposed to fire, producing a carbonaceous char layer that insulates the substrate from the heat source by producing a char layer that protects it, and emitting gases that cool the surface area (Fig. 1).

Intumescents are applied in a variety of industries. PFP materials are used in onshore and offshore applications, including gas/petroleum storage and distribution; petrochemical plants; storage tanks/vessels; refineries; power stations; steel structural beams and elements; valves; offshore platforms; and tanker vessels. The effects of heat on steel are significant, with steel losing half of its load bearing strength at 588 C (1000 F)—the failure point for steel. The dangers associated with this damage are structural collapse, explosion of vessel contents, pipe fractures causing jet fires, and lack of containment that allows fire to spread.

Why specify intumescent PFP systems? In addition to their passive fire protection properties, they are robust and have good adhesion, high tensile and compressive strengths, and good resistance to impact and vibration. They have excellent weatherability and often do not require topcoats. PFP materials also have good chemical resistance and protect the substrate against corrosion due to extremely low water absorption. These systems often have a lower installed weight than other systems with similar properties, thus adding less weight to the final structure while providing maximum protection. PFP systems can be 40%–60% lighter than "lightweight" cementitious products.

Training and certification to apply these materials is of utmost importance to achieve consistent properties and the correct functioning of PFP systems. Normally a company’s employees must be trained to apply PFP materials. Most material suppliers provide qualified applicator certification to ensure the correct application of PFP materials. For example, one global paint manufacturer provides a two-day training course with hands-on application, including theory and practical training, sample preparation, and certification. The course trains and takes input from the applicator, fabricator, client, and material and equipment suppliers (Fig. 2).

In the training course, applicators...
allows solvent-free application. The material suppliers must certify the equipment for the application. The components are made from materials that will provide the longest life during operation and help resist material abrasiveness while generating and maintaining the temperature and pressure required.

Plural-component equipment must be configured with the material supplier and certified for application of the specific material. Components designed and specified for use with these materials are ‘configured’ or put together in an optimum way to allow the desired output. Components include pumps, heating systems, motors, tanks, hoses, and spray guns. The equipment system must be able to heat the material to the proper temperature, maintain the temperature to the gun, proportion the material to give proper ratio, and generate the correct pressure for mixing and spray pattern. The specialized chemistry in PFP systems requires a machine that is designed with these considerations in mind (Fig. 4).

Intumescent Applications

Where are PFP materials being applied? All over the world. Many structures that can benefit from having PFP, including offshore rigs. Figures 5 and 6 show the application of an intumescent on the offshore platform “Hammerfest.”

In the U.S., PFP is being used on the steel structure for the new interchange station servicing subways, buses, and trains in New York City. The architect of the project specified intumescent PFP, and a steel structure workshop was conducted in La Coruña, Spain. Structural members have the PFP applied (Figs. 7

Continued
See the difference you’ll make

www.nubiola.com

SPAIN - USA - COLOMBIA - CHINA
GERMANY - ROMANIA - BULGARIA - INDIA
JAPAN - SOUTH AFRICA - UK

Click our Reader e-Card at paintsquare.com/ric

NUBIROX RANGE

We give you more for less

Nubirox 100 and 200 Series, by Nubiola Inorganic Pigments, are modified Zinc Phosphates that show a much better performance/cost ratio than conventional products. They are not harmful to the aquatic media, unlike Conventional Zinc Phosphates (European Directive 2004/73/CE), and can be used in a wide variety of water and solvent-based coatings.

HIGH EFFICIENCY AT LOWER PIGMENT LOAD - Typical Performance

- Anticorrosion Protection
- Standard Zinc Phosphate

(-) PIGMENT (+)
Tips

Large storage vessels in the petroleum industry are a target application area for PFP materials because they benefit from the fire protection and anti-corrosion properties of PFP materials. The adhesion to substrate and moisture-resistant nature of intumescents minimize the possibility of corrosion occurring due to moisture between the material and substrate. Figure 9 shows a gas sphere in Tenerife, Spain, on which a proprietary PFP has been applied. This was an on-site application, as can be seen by the plural-component unit set up on the scaffold below (Fig. 10). Figure 11 shows a sphere on which a cementitious PFP material was applied.

Conclusion

Passive Fire Protection is a very specialized niche application that is growing worldwide due to the need for fire and corrosion protection that is low in
Maintenance Tips

installation weight. Companies who are certified to apply these materials have an advantage today because they have a lead in specialized markets and competition is currently limited. The only way to get involved is to become certified by one of the material suppliers and work to develop the market together. Proper training and technical support from the material and equipment suppliers are important components of a successful and on-time installation of PFP because PFP requires the combined expertise of the applicator, technical advisor, material supplier, and equipment supplier.

Acknowledgements

This article, an example of the combined expertise that is required for PFP training and installation, would not have been possible without the contributions of Herbert Mann, Rob Jansen, Werner Goetz, Uwe Tinz and Dirk Scherer of WIWA GmbH; Carlos Aguirre of Disnamair S.A.; and Jack Tay, John Yeoh, and Markus Federico of International Paint. The author thanks all for their contribution and support.

Reference

1. International Paint, “Pre-Application Key Points to Note,” on steps before applying PFP.