Improving the Building Envelope
Addressing Thermal Bridging

Aerogel Building Insulation Blanket
Agenda

• Insulation technology needs
• Aerogel technology
• Thermal properties
• Material properties
• Application details and thermal modeling
Energy Efficiency Codes & Regulations

- IECC
- ASHRAE 90.1
- ASHRAE 189.1
- LEED v4.0
- Living Building Challenge
- Net Zero Buildings
- 2030 Challenge

![Energy Efficiency Codes & Regulations](image)

The 2030 Challenge

- Fossil Fuel Energy Reduction
- Fossil Fuel Energy Consumption

![Logos](image)
Aerogel Technology

- Invented in the 1930s
- Synthetically produced amorphous silica gel
- Nanoporous structures that minimize thermal transport – low thermal conductivity
- Aerogel is composed of 95-99% air, making it one of the lightest existing materials
- Aerogel started its applications in aerospace and expanded into many fields
- Manufactured and sold in a blanket form
Thermal Properties
Superior thermal performance

Comparative R-value Per Inch[^2]

<table>
<thead>
<tr>
<th>Material</th>
<th>R-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Insulation Blanket</td>
<td>9.6[^1]</td>
</tr>
<tr>
<td>Polyisocyanurate</td>
<td>6</td>
</tr>
<tr>
<td>Extruded Polystyrene (XPS)</td>
<td>5</td>
</tr>
<tr>
<td>Mineral Wool</td>
<td>4.2</td>
</tr>
<tr>
<td>Expanded Polystyrene (EPS)</td>
<td>3.8</td>
</tr>
<tr>
<td>Fiberglass Batts</td>
<td>3.5</td>
</tr>
</tbody>
</table>

[^1]Average R-values per ASTM C518 at 100°F and 2 psi compression, shown in hr-ft²-F/BTU; USI-values shown in W/m²K.

[^2]Thermal conductivity varies by specific grade of insulation for any given material family. Values shown represent typical values and are only provided for general comparison of families.
Thin-Profile, Flexible Insulating Blanket
A simple solution for thermal bridging

- Significantly increase thermal resistance in space-limited situations
- Enables new design possibilities
- Easy to install in difficult profiles such as curves and corners
- Fast installation with simple tools
- Fire resistant
- Hydrophobic
- Does not settle over time
- ASTM C1728 Standard Specification for Flexible Aerogel Insulation
Thermal Bridging

“...the heat flow through a poor-performing detail, like an exposed concrete slab edge, could account for over 40% of the heat flow through the building envelope. In comparison, a thermally efficient detail, such as insulated slab edge, could contribute less than 10%...”

An Evaluation of Thermal Performance of Various Details

1. Curtainwall to at-grade detail with the insulation blanket applied to the neck of the curtainwall to the below-grade rigid insulation

2. Curtainwall jamb at the exterior and interior insulated steel stud assembly with the insulation blanket applied around the adjacent steel stud and at the wall-to-curtainwall transition

3. Rehabilitated window-wall system with the insulation blanket at the slab edge and around glazing vertical and horizontal mullions

4. Curtainwall-to-roof parapet transition

5. Curtainwall spandrel vertical mullion wrap
1. Curtainwall to At-Grade Slab Transition

Perimeter heat loss for curtainwall at-grade by varying U-values

<table>
<thead>
<tr>
<th>Depth of Insulation</th>
<th>Below-Grade Insulation (hr·ft²·°F/BTU)</th>
<th>Slab Perimeter Heat Loss (BTU/hr·ft·°F)</th>
<th>% Reduction in Heat Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Without Insulation Blanket</td>
<td>10 mm Insulation Blanket</td>
</tr>
<tr>
<td>24”</td>
<td>R-10</td>
<td>0.495</td>
<td>0.370</td>
</tr>
</tbody>
</table>

Aerogel insulation blanket was placed to cover the neck of the curtainwall to the below-grade insulation.

Without insulation blanket.
2. Curtainwall to Exterior/Interior Insulated Steel-Stud Wall Transition

Insulation blanket was added in two locations:
1. Around the interior steel studs adjacent to the curtain mullion
2. Bridging between the curtainwall neck to the exterior sheathing

Without aerogel insulation blanket

Linear transmittance calculations for steel-stud wall transition

<table>
<thead>
<tr>
<th>Transmittance Description</th>
<th>Linear Transmittance (BTU/hr·ft·°F)</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curtinwall jamb to an interior and exterior insulated steel stud assembly</td>
<td>Without Insulation Blanket</td>
<td>10 mm Insulation Blanket</td>
</tr>
<tr>
<td></td>
<td>0.069</td>
<td>0.019</td>
</tr>
</tbody>
</table>
3. Window-Wall at Floor Slab

Linear transmittance calculations for a window-wall spandrel section slab face

<table>
<thead>
<tr>
<th>Transmittance Description</th>
<th>Linear Transmittance (BTU/hr·ft·°F)</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without Insulation Blanket</td>
<td>10 mm Insulation Blanket</td>
</tr>
<tr>
<td>Window-wall spandrel section</td>
<td>0.556</td>
<td>0.264</td>
</tr>
</tbody>
</table>

Aerogel insulation blanket was modeled over the slab face and both the horizontal and vertical mullions.
4. Curtainwall-to-Roof Parapet Transition

Linear transmittance calculations for parapet detail

<table>
<thead>
<tr>
<th>Transmittance Description</th>
<th>Linear Transmittance, BTU/hr·ft·°F</th>
<th>% Reduction in Heat Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curtinwall parapet</td>
<td>Without Insulation Blanket: 0.614</td>
<td>With 10 mm Insulation Blanket: 0.513</td>
</tr>
</tbody>
</table>
5. Curtainwall Spandrel Vertical Mullion Wrap

U-value results for curtainwall spandrel section

<table>
<thead>
<tr>
<th>Spandrel Height, ft</th>
<th>Curtainwall Backpan Insulation, hr·ft²·°F/FTU</th>
<th>Spandrel U-Value, BTU/hr·ft²·°F</th>
<th>% Reduction in Heat Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without Insulation Blanket</td>
<td>With 10 mm Insulation Blanket</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>R 16.8</td>
<td>0.169</td>
<td>0.153</td>
</tr>
</tbody>
</table>
Thermal Models
Show a 10 to 75% reduction of heat loss by reducing thermal bridging

<table>
<thead>
<tr>
<th>Detail</th>
<th>Transmittance Description</th>
<th>Linear Transmittance (BTU/hr·ft·°F)</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Without Insulation Blanket</td>
<td>10 mm Insulation Blanket</td>
</tr>
<tr>
<td>1</td>
<td>Curtainwall at grade</td>
<td>0.495</td>
<td>0.370</td>
</tr>
<tr>
<td>2</td>
<td>Curtainwall jamb to an interior and exterior insulated steel stud assembly</td>
<td>0.069</td>
<td>0.019</td>
</tr>
<tr>
<td>3</td>
<td>Window-wall at floor slab</td>
<td>0.556</td>
<td>0.264</td>
</tr>
<tr>
<td>4</td>
<td>Curtainwall to roof parapet</td>
<td>0.614</td>
<td>0.513</td>
</tr>
<tr>
<td>5</td>
<td>Curtainwall spandrel vertical mullion wrap</td>
<td>0.169</td>
<td>0.153</td>
</tr>
</tbody>
</table>
Whole-Building Energy Models
Show 3 to 7% energy savings by reducing thermal bridging

Annual heating energy savings for Chicago climate

<table>
<thead>
<tr>
<th>Building Scenario</th>
<th>Assembly Performance</th>
<th>Annual Heating Energy Use, MMBtu (GJ)</th>
<th>Savings Due to Aerogel Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>With Insulation Blanket</td>
<td>Without Insulation Blanket</td>
</tr>
<tr>
<td>Scenario 1: Façade with glazing system covering 100% of the façade area</td>
<td>Conventional assemblies</td>
<td>5,905 (6,230)</td>
<td>6,123 (6,460)</td>
</tr>
<tr>
<td></td>
<td>Higher-performance assemblies</td>
<td>4,275 (4,511)</td>
<td>4,421 (4,665)</td>
</tr>
<tr>
<td>Scenario 2: Façade with curtainwall glazing and a steel stud wall assembly</td>
<td>Conventional assemblies</td>
<td>4,279 (4,515)</td>
<td>4,545 (4,796)</td>
</tr>
<tr>
<td></td>
<td>Higher-performance assemblies</td>
<td>3,114 (3,285)</td>
<td>3,340 (3,524)</td>
</tr>
</tbody>
</table>
SELECTED APPLICATIONS/INSTALLATIONS
Space-Constrained Locations
Easy-to-use, thin material that offers freedom of design and improved energy efficiency
Thermal Separator
Oregon
Space-Constrained Transitions
Ontario
Project Information

Large Project in Asia
Height: 280 m
Façade: Unitized Curtainwall System
Typical Mullion Detail at Spandrel

Condensation may occur at the marked area

\[U_{ij} = 10.3 \text{ W/m}^2\text{K} \]

Min. Temperature: 8.1°C
Optimized Curtainwall Detail

Insulation blanket, 10 mm thick
Typical Mullion Detail at Spandrel

Traditional Solution

Optimized High-Performance Solution

$U_{tj} = 10.3 \text{ W/m}^2\text{K}$
Min. Temperature: 8.1°C

$\theta_s = 10.20 \degree \text{C}$

$\theta_{si} \text{ min} = 8.047 \degree \text{C}$
$f_{R} = 0.590$
$\psi_{s(50\%)} = 100\%$
$\psi_{100\%} = 41\%$
$\psi_{50\%} = 32\%$

$\theta_c = 16.50 \degree \text{C}$

$U_{tj} = 4.61 \text{ W/m}^2\text{K} \quad (\downarrow 55\%)$
Min. Temperature: 15.4°C

$\theta_{si} \text{ min} = 15.448 \degree \text{C}$
$f_{R} = 0.807$
$\psi_{s(50\%)} = 75\%$
$\psi_{100\%} = 66\%$
$\psi_{50\%} = 53\%$
Performance Mockup Testing
Performance Mockup Testing
Performance Mockup Testing

<table>
<thead>
<tr>
<th>Channel</th>
<th>Exterior Surface Temperature</th>
<th>Interior Surface Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH01</td>
<td>24.149°F</td>
<td>-9.2°F</td>
</tr>
<tr>
<td>CH02</td>
<td>-9.4°F</td>
<td>-9.7°F</td>
</tr>
<tr>
<td>CH03</td>
<td>-7.3°F</td>
<td>-5.1°F</td>
</tr>
<tr>
<td>CH04</td>
<td>-8.0°F</td>
<td>14.5°F</td>
</tr>
<tr>
<td>CH05</td>
<td>12.4°F</td>
<td>-2.7°F</td>
</tr>
<tr>
<td>CH06</td>
<td>10.6°F</td>
<td>-10.2°F</td>
</tr>
<tr>
<td>CH07</td>
<td>10.6°F</td>
<td>-13.0°F</td>
</tr>
<tr>
<td>CH08</td>
<td>18.4°F</td>
<td>18.4°F</td>
</tr>
<tr>
<td>CH09</td>
<td>18.8°F</td>
<td>16.7°F</td>
</tr>
<tr>
<td>CH10</td>
<td>16.7°F</td>
<td>13.7°F</td>
</tr>
<tr>
<td>CH11</td>
<td>11.8°F</td>
<td>10.8°F</td>
</tr>
<tr>
<td>CH12</td>
<td>18.8°F</td>
<td>10.8°F</td>
</tr>
<tr>
<td>CH13</td>
<td>11.8°F</td>
<td>10.8°F</td>
</tr>
<tr>
<td>CH14</td>
<td>10.8°F</td>
<td>10.8°F</td>
</tr>
<tr>
<td>CH15</td>
<td>10.8°F</td>
<td>10.8°F</td>
</tr>
<tr>
<td>CH16</td>
<td>10.8°F</td>
<td>10.8°F</td>
</tr>
<tr>
<td>CH17</td>
<td>10.8°F</td>
<td>10.8°F</td>
</tr>
</tbody>
</table>

- **Exterior air temperature**
- **Exterior surface temperature of the aluminum panel at spandrel**
- **Exterior surface temperature of the glass at vision**
- **Interior surface temperature of the glass at vision**
- **Exterior surface temperature of the mullion at spandrel**
- **Interior surface temperature of the mullion at vision**
Performance Mockup Testing

The consultant inspected the facade after 8 hours of testing, and no condensation was found at the spandrel area …
Insulation Blanket Installation Procedure (cont.)
Installing Aerogel Insulation Blanket
Clarification: OSHA Requirements for Silica Dust

- Applies to **crystalline silica**
- Aerogels are **amorphous silica**
 - Amorphous silica is exempt from the OSHA regulation
- This was confirmed through federal (EPA) ruling
 - Refer to EPA 40 CFR Part 180

ENVIRONMENTAL PROTECTION AGENCY

40 CFR Part 180

Silica, Amorphous, Fumed (Crystalline Free); Exemption from the Requirement of a Tolerance

AGENCY: Environmental Protection Agency (EPA).

ACTION: Final rule.
Material Handling

• Recommended PPE
 – Gloves
 – Safety glasses
 – Dust mask
 – Well-ventilated area

• Cutting
 – Straight-edge box cutter
 – Fabric cutter
Installation

• Attachments vary based on the needed green strength and the backing support
 – Common construction materials – Apply 3/16" ribbon of an approved sealant and press the insulation flat against the ribbon to adhere
 – Plastics and air barriers – Apply 3/16" ribbons of a compatible air barrier sealant and press the insulation flat against the ribbons to adhere
 – Mechanical fasteners can be used to attach the blanket or to support it while the adhesives cure
 – Higher-green-strength spray adhesives and/or contact cements work well when it is necessary to make sharp curves and bends in the material
Installation (cont.)

• Surface prep (building and insulation blanket)
 – Dry
 – Sound
 – Free of dirt, foreign objects and protrusions >1/8"

• Ambient conditions
 – Do NOT install in the rain or in wind conditions that could affect the quality of the installation or cure of the adhesives selected

• Exposure
 – If installed correctly, the blanket may be exposed to weather prior to installing the cladding, with minimal impact on performance
 – Should be protected if subject to mechanical abrasion and/or traffic

• Visible surfaces
 – If permanently exposed, a coat of a tinted silicone elastomeric coating may be applied for aesthetics
Compatibility

• Compatible
 – Sealants
 – Air barrier materials
 – Other water-based adhesives

• Limitations
 – Medical or pharmaceutical uses
 – Not tested or recommended in residential applications
 – Long-term exposure to, or submersion in, water or other fluid mediums
 – Air-handling vents or HVAC
 – Applications subject to
 • Repeated striking
 • Mechanical abrasion
 • Contact with oils and solvents
Aerogel Compression

Tested for compression per ASTM C165

10% strain @ 10 psi

Aerogel insulation has high compression resistance but will still contour to wall surface, which will eliminate the potential for air pockets.
The information contained in this communication does not constitute an offer, does not give rise to binding obligations, and is subject to change without notice to you. The creation of binding obligations will occur only if an agreement is signed by authorized representatives of Dow Corning and your company. Any reference to competitor materials contained in this communication is not an endorsement of those materials by Dow Corning or an endorsement by the competitor of Dow Corning materials.

To the fullest extent permitted by applicable law, Dow Corning disclaims any and all liability with respect to your use or reliance upon the information. **DOW CORNING DOES NOT MAKE ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, WITH RESPECT TO THE UTILITY OR COMPLETENESS OF THE INFORMATION AND DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. DOW CORNING**

Dow is a registered trademark of The Dow Chemical Company.
Dow Corning is a registered trademark of Dow Corning Corporation. The Corning portion of the Dow Corning trademark is a trademark of Corning Incorporated, used under license.
All other trademarks are the property of their respective owners.
©2016 Dow Corning Corporation, a wholly owned subsidiary of The Dow Chemical Company. All rights reserved.