Polyaspartic Coatings
High-Profile Protective and Marine Applications

12/18/13 Mike Jeffries
Agenda

- Polyaspartic Coatings Overview
- Corrosion Protection
- Marine Applications
- Gen II Polyaspartic Improvements
Disclaimer

The manner in which you use and the purpose to which you put and utilize our products, technical assistance and information (whether verbal, written or by way of production evaluations), including any suggested formulations and recommendations, are beyond our control. Therefore, it is imperative that you test our products, technical assistance and information to determine to your own satisfaction whether our products, technical assistance and information are suitable for your intended uses and applications. This application-specific analysis must at least include testing to determine suitability from a technical as well as health, safety, and environmental standpoint. Such testing has not necessarily been done by us. Unless we otherwise agree in writing, all products are sold strictly pursuant to the terms of our standard conditions of sale which are available upon request. All information and technical assistance is given without warranty or guarantee and is subject to change without notice. It is expressly understood and agreed that you assume and hereby expressly release us from all liability, in tort, contract or otherwise, incurred in connection with the use of our products, technical assistance, and information. Any statement or recommendation not contained herein is unauthorized and shall not bind us. Nothing herein shall be construed as a recommendation to use any product in conflict with any claim of any patent relative to any material or its use. No license is implied or in fact granted under the claims of any patent.
Polyaspartic Coatings

- Aliphatic polyureas based on polyaspartic esters + aliphatic isocyanate

\[
R'\text{-N}=\text{C}=\text{O} + \text{H-NN} \xrightarrow{X} \text{R'-N-C-N} \xrightarrow{X} \text{R'-N-C-N}
\]

Isocyanate Aspartate Aliphatic Urea

\[
R\text{-N}=\text{C}=\text{O} + \text{R'-OH} \rightarrow \text{R-N-C-OR'}
\]

Isocyanate Polyol Urethane
Polyaspartic Features

- Fast cure with potlife
- Aliphatic – Light Stable
- High film build
- Low VOC
- High Solids
- Corrosion resistance
- Spray, brush, or roll
Polyaspartic Product Line

<table>
<thead>
<tr>
<th>Properties</th>
<th>PAE 1</th>
<th>PAE 2</th>
<th>PAE 3</th>
<th>PAE 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Solids</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>90 (BuAc)</td>
</tr>
<tr>
<td>Eq. Wt.</td>
<td>229</td>
<td>277</td>
<td>291</td>
<td>323</td>
</tr>
<tr>
<td>cps @ 25°C</td>
<td>100 max</td>
<td>900-2000</td>
<td>800-2000</td>
<td>110-200</td>
</tr>
<tr>
<td>Reactivity</td>
<td>High</td>
<td>Mid-high</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Gel Time(^1)</td>
<td>< 5 min</td>
<td>12-120 min</td>
<td>8-24 hrs</td>
<td>8-24 hrs</td>
</tr>
<tr>
<td>APHA Color</td>
<td><250</td>
<td><250</td>
<td><250</td>
<td><100</td>
</tr>
</tbody>
</table>

\(^1\)PAC/Polyisocyanate, NCO:NH Ratio 1.0, 65% solids in 1:1 MEK A-100
Polyaaspartics for High Solids

<table>
<thead>
<tr>
<th>Resin</th>
<th>cps as supplied</th>
<th>cps @ 75% Weight Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAE 1</td>
<td>100 max</td>
<td>~15</td>
</tr>
<tr>
<td>PAE 2</td>
<td>900-2000</td>
<td>~18</td>
</tr>
<tr>
<td>PAE 3</td>
<td>800-2000</td>
<td>~18</td>
</tr>
</tbody>
</table>
Aliphatic Polyisocyanates
Co-reactants for Polyaspartic Esters

<table>
<thead>
<tr>
<th>Type</th>
<th>Solid content approx. [%] (solvent)</th>
<th>NCO-content approx. [%]</th>
<th>Viscosity 23 °C approx. [mPas]</th>
<th>NCO functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDI Biuret</td>
<td>100</td>
<td>22.0</td>
<td>10000</td>
<td>●</td>
</tr>
<tr>
<td>HDI Biuret</td>
<td>75 (MPA/X)</td>
<td>16.5</td>
<td>250</td>
<td>●</td>
</tr>
<tr>
<td>HDI Biuret</td>
<td>100</td>
<td>23.0</td>
<td>2500</td>
<td>●</td>
</tr>
<tr>
<td>HDI Trimer</td>
<td>100</td>
<td>21.5</td>
<td>2500</td>
<td>●</td>
</tr>
<tr>
<td>HDI Trimer</td>
<td>100</td>
<td>23.0</td>
<td>1200</td>
<td>●</td>
</tr>
<tr>
<td>HDI Trimer</td>
<td>100</td>
<td>23.5</td>
<td>730</td>
<td>●</td>
</tr>
<tr>
<td>HDI Dimer</td>
<td>100</td>
<td>21.8</td>
<td>150</td>
<td>○</td>
</tr>
<tr>
<td>HDI Allophanate</td>
<td>100</td>
<td>19.4</td>
<td>450</td>
<td>○</td>
</tr>
<tr>
<td>HDI Prepolymer</td>
<td>100</td>
<td>11.0</td>
<td>6000</td>
<td>○</td>
</tr>
<tr>
<td>HDI / IPDI Prepolymer</td>
<td>86 (BA)</td>
<td>10.2</td>
<td>2000</td>
<td>●</td>
</tr>
</tbody>
</table>

- **Low functionality:** $2.0 < F < 2.8$
- **Medium functionality:** $2.8 < F < 3.6$
- **High functionality:** $F > 3.6$

Viscosity, functionality and % NCO affect pot life and cure speed.
Factor Effecting Cure

Humidity

<table>
<thead>
<tr>
<th>% RH</th>
<th>100</th>
<th>1.95</th>
<th>2.38</th>
<th>2.86</th>
<th>3.44</th>
<th>4.11</th>
<th>4.89</th>
<th>5.80</th>
<th>6.85</th>
<th>8.10</th>
<th>9.45</th>
<th>11.04</th>
<th>12.87</th>
<th>14.94</th>
<th>17.28</th>
<th>19.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>1.85</td>
<td>2.26</td>
<td>2.72</td>
<td>3.27</td>
<td>3.90</td>
<td>4.45</td>
<td>5.11</td>
<td>5.85</td>
<td>6.85</td>
<td>7.70</td>
<td>8.98</td>
<td>10.49</td>
<td>12.23</td>
<td>14.19</td>
<td>16.42</td>
<td>18.95</td>
</tr>
<tr>
<td>90</td>
<td>1.76</td>
<td>2.14</td>
<td>2.57</td>
<td>3.10</td>
<td>3.70</td>
<td>4.30</td>
<td>5.02</td>
<td>5.80</td>
<td>6.85</td>
<td>7.70</td>
<td>8.51</td>
<td>9.45</td>
<td>11.58</td>
<td>13.45</td>
<td>15.55</td>
<td>17.96</td>
</tr>
<tr>
<td>85</td>
<td>1.66</td>
<td>2.02</td>
<td>2.43</td>
<td>2.92</td>
<td>3.49</td>
<td>4.16</td>
<td>4.93</td>
<td>5.82</td>
<td>6.89</td>
<td>8.03</td>
<td>9.38</td>
<td>10.49</td>
<td>12.87</td>
<td>14.94</td>
<td>17.82</td>
<td>20.16</td>
</tr>
<tr>
<td>80</td>
<td>1.56</td>
<td>1.90</td>
<td>2.29</td>
<td>2.75</td>
<td>3.29</td>
<td>3.91</td>
<td>4.64</td>
<td>5.48</td>
<td>6.51</td>
<td>7.70</td>
<td>8.98</td>
<td>10.49</td>
<td>12.87</td>
<td>14.94</td>
<td>17.82</td>
<td>20.16</td>
</tr>
<tr>
<td>75</td>
<td>1.46</td>
<td>1.79</td>
<td>2.15</td>
<td>2.58</td>
<td>3.08</td>
<td>3.67</td>
<td>4.35</td>
<td>5.14</td>
<td>6.08</td>
<td>7.09</td>
<td>8.28</td>
<td>9.45</td>
<td>11.04</td>
<td>12.87</td>
<td>14.94</td>
<td>17.82</td>
</tr>
<tr>
<td>70</td>
<td>1.37</td>
<td>1.67</td>
<td>2.00</td>
<td>2.41</td>
<td>2.88</td>
<td>3.42</td>
<td>4.06</td>
<td>4.80</td>
<td>5.67</td>
<td>6.62</td>
<td>7.73</td>
<td>9.01</td>
<td>10.49</td>
<td>12.87</td>
<td>14.94</td>
<td>17.82</td>
</tr>
<tr>
<td>65</td>
<td>1.27</td>
<td>1.55</td>
<td>1.86</td>
<td>2.24</td>
<td>2.67</td>
<td>3.18</td>
<td>3.77</td>
<td>4.45</td>
<td>5.27</td>
<td>6.14</td>
<td>7.18</td>
<td>8.37</td>
<td>9.94</td>
<td>11.58</td>
<td>13.45</td>
<td>15.96</td>
</tr>
<tr>
<td>60</td>
<td>1.17</td>
<td>1.43</td>
<td>1.72</td>
<td>2.06</td>
<td>2.47</td>
<td>2.93</td>
<td>3.48</td>
<td>4.11</td>
<td>4.86</td>
<td>5.67</td>
<td>6.62</td>
<td>7.73</td>
<td>9.01</td>
<td>10.49</td>
<td>12.87</td>
<td>14.94</td>
</tr>
<tr>
<td>55</td>
<td>1.07</td>
<td>1.31</td>
<td>1.57</td>
<td>1.89</td>
<td>2.26</td>
<td>2.69</td>
<td>3.19</td>
<td>3.77</td>
<td>4.46</td>
<td>5.20</td>
<td>6.07</td>
<td>7.08</td>
<td>8.22</td>
<td>9.50</td>
<td>10.97</td>
<td>12.97</td>
</tr>
<tr>
<td>50</td>
<td>0.98</td>
<td>1.19</td>
<td>1.43</td>
<td>1.72</td>
<td>2.06</td>
<td>2.45</td>
<td>2.90</td>
<td>3.48</td>
<td>4.05</td>
<td>4.73</td>
<td>5.52</td>
<td>6.44</td>
<td>7.47</td>
<td>8.64</td>
<td>9.98</td>
<td>11.97</td>
</tr>
<tr>
<td>45</td>
<td>0.88</td>
<td>1.07</td>
<td>1.29</td>
<td>1.55</td>
<td>1.85</td>
<td>2.20</td>
<td>2.68</td>
<td>3.08</td>
<td>3.65</td>
<td>4.25</td>
<td>4.97</td>
<td>5.79</td>
<td>6.72</td>
<td>7.78</td>
<td>8.98</td>
<td>10.97</td>
</tr>
<tr>
<td>40</td>
<td>0.78</td>
<td>0.95</td>
<td>1.14</td>
<td>1.38</td>
<td>1.64</td>
<td>1.96</td>
<td>2.32</td>
<td>2.74</td>
<td>3.24</td>
<td>3.78</td>
<td>4.42</td>
<td>5.15</td>
<td>5.98</td>
<td>6.91</td>
<td>7.98</td>
<td>9.98</td>
</tr>
<tr>
<td>35</td>
<td>0.68</td>
<td>0.83</td>
<td>1.00</td>
<td>1.20</td>
<td>1.44</td>
<td>1.71</td>
<td>2.03</td>
<td>2.40</td>
<td>2.84</td>
<td>3.31</td>
<td>3.86</td>
<td>4.50</td>
<td>5.23</td>
<td>6.05</td>
<td>6.98</td>
<td>8.98</td>
</tr>
<tr>
<td>30</td>
<td>0.59</td>
<td>0.71</td>
<td>0.86</td>
<td>1.03</td>
<td>1.23</td>
<td>1.47</td>
<td>1.74</td>
<td>2.06</td>
<td>2.43</td>
<td>2.84</td>
<td>3.31</td>
<td>3.86</td>
<td>4.48</td>
<td>5.18</td>
<td>5.99</td>
<td>7.98</td>
</tr>
<tr>
<td>25</td>
<td>0.49</td>
<td>0.60</td>
<td>0.72</td>
<td>0.86</td>
<td>1.03</td>
<td>1.22</td>
<td>1.45</td>
<td>1.71</td>
<td>2.03</td>
<td>2.36</td>
<td>2.76</td>
<td>3.22</td>
<td>3.74</td>
<td>4.32</td>
<td>4.99</td>
<td>6.98</td>
</tr>
<tr>
<td>20</td>
<td>0.39</td>
<td>0.48</td>
<td>0.57</td>
<td>0.69</td>
<td>0.82</td>
<td>0.98</td>
<td>1.16</td>
<td>1.37</td>
<td>1.62</td>
<td>1.89</td>
<td>2.21</td>
<td>2.57</td>
<td>2.99</td>
<td>3.46</td>
<td>3.99</td>
<td>5.99</td>
</tr>
<tr>
<td>15</td>
<td>0.29</td>
<td>0.36</td>
<td>0.43</td>
<td>0.52</td>
<td>0.62</td>
<td>0.73</td>
<td>0.87</td>
<td>1.03</td>
<td>1.22</td>
<td>1.42</td>
<td>1.66</td>
<td>1.93</td>
<td>2.24</td>
<td>2.59</td>
<td>2.99</td>
<td>4.99</td>
</tr>
<tr>
<td>10</td>
<td>0.20</td>
<td>0.24</td>
<td>0.29</td>
<td>0.34</td>
<td>0.41</td>
<td>0.49</td>
<td>0.58</td>
<td>0.69</td>
<td>0.81</td>
<td>0.95</td>
<td>1.10</td>
<td>1.29</td>
<td>1.49</td>
<td>1.73</td>
<td>2.00</td>
<td>4.99</td>
</tr>
<tr>
<td>5</td>
<td>0.10</td>
<td>0.12</td>
<td>0.14</td>
<td>0.17</td>
<td>0.21</td>
<td>0.24</td>
<td>0.29</td>
<td>0.34</td>
<td>0.41</td>
<td>0.47</td>
<td>0.55</td>
<td>0.64</td>
<td>0.75</td>
<td>0.86</td>
<td>1.00</td>
<td>4.99</td>
</tr>
<tr>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Laboratory operation area = yellow
Approximate equal dry time = green
Polyaspartics for Corrosion Protection
Polyaspartics for Corrosion Protection

- Reducing the number of coats
 - Cost and labor savings
 - Combining the benefits of the epoxy and the PUR

![Diagram showing the layers of a coating system being replaced by a polyaspartic layer on steel](image-url)
Fewer Coats – Corrosion Resistance

Alberta Transportation and British Columbia Ministry of Transportation CPTP Testing Program 2008
3015 hours of ASTM D5894 Cyclic Weathering

<table>
<thead>
<tr>
<th>Primer</th>
<th>Midcoat</th>
<th>Finish Coat</th>
<th>Scribe Undercut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinforced Inorganic Zinc</td>
<td>Phenalkamine</td>
<td>Acrylic Polyurethane</td>
<td>1 mm</td>
</tr>
<tr>
<td>Organic Zinc</td>
<td>Epoxy Polyamide</td>
<td>Acrylic Polyurethane</td>
<td>1 mm</td>
</tr>
<tr>
<td>Reinforced Inorganic Zinc</td>
<td>None</td>
<td>Polyaspartic</td>
<td>1.5 mm</td>
</tr>
<tr>
<td>Organic Zinc</td>
<td>None</td>
<td>Polyaspartic</td>
<td>1 mm</td>
</tr>
</tbody>
</table>

Data from a recent article published in JPCL 2013 authored by Mike O'Donoghue, Vijay Datta, Stan Walker, Terry Wiseman, Peter Roberts, and Norb Repman
Case History - Railcars

- Hopper cars coated with a DTM polyaspartic
 - Steel blasted to NACE No.3
- Two Painters
- ~16 mils WFT
- ~40 min/car
Case History - Railcars

- Excellent application in hard-to-coat areas
- ~30% Savings in time and labor

<table>
<thead>
<tr>
<th>Coating System</th>
<th>Material Usage</th>
<th>Labor Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTM Polyaspartic</td>
<td>36 Gallons</td>
<td>10.5 Hours</td>
</tr>
<tr>
<td>2-Coat Epoxy/Urethane</td>
<td>35 Gallons</td>
<td>15.5 Hours</td>
</tr>
</tbody>
</table>
Case History - Railcars

- 11 Years in Service
Case History – Bridge 1199 over I-84 in Danbury, CT

- Originally presented by Brian Castler from Conn DOT in 2003 at SSPC
- Quantify the economic benefit

- West-bound lanes painted with 3-coat system (12,264 ft²)
- East-bound lanes painted with 2-coat system (10,525 ft²)
Case History – Bridge 1199 over I-84 in Danbury, CT

Direct savings to the owners of $6.02/ft²
Case History – Bridge 1199 over I-84 in Danbury, CT

Field painting productivity
Calculating the square ft. per day

- 3-coat system was able to cover 383 ft² per day
- 2-coat system was able to cover 502 ft² per day

31% improvement to productivity
Case History – Marine Corps Museum

• Project completed in 2006
• Fabricator: Banker Steel Company, LLC.
• Painting Contractor: EPAcoat, Inc.
• This project had tight budget and production schedule
 • DTM polyaspartic, shop-applied
 • Fabricator able to move steel 2 hours after application of finish coat
Case History – Marine Corps Museum

• Centerpiece: 160-ft glass atrium supported by tapered steel girders
 • Girders: sizes up to 18” x 72” x 180 feet long
 • Shipped in two pieces and touched up on site
Case History - Dallas Cowboys Stadium

- Stadium completed 2009
- 2½ Years, $1.1 billion to build
- Design and engineering: HKS Inc.
- GC: Manhattan Construction
- Steel Fabricator: W&W Steel/AFCO Steel
Case History - Dallas Cowboys Stadium

- The steel was painted in the shop
- 2-coat system of epoxy primer with polyaspartic topcoat
 - Movement of the steel 2 hours after application of finish coat
 - High throughput kept production on schedule
 - Highly durable finish coat led to minimal touch up on site
Polyaspartics for Marine Application
Depending on the WPG location different corrosion categories* are required:

Category C3: Urban and industrial atmosphere with moderate pollution.

Category C5: Coastal and offshore areas with high salinity.
Case History – Offshore Wind Power

Industrial coating:
Category C3

Substitution of the primer by a DTM polyaspartic coating

*DTM = direct to metal

Corrosion protection:
Category C5

Substitution of the intermediate coat by polyaspartic coating

24-36 hrs

50% reduction in VOC
New Developments in Polyaspartics

- Polyaspartic coatings are a proven technology
- However some improvements were needed
 - Need for improved recoat window
 - Application difficulties in high temperature and humidity conditions
 - Shortened potlife
 - Changes in cure times
 - Increased roller marking, overspray melt-in
 - Higher solids (85%+) worsen the issue
Next Generation Isocyanate

Engineered IPDI / HDI
Aliphatic Prepolymer for Polyaspartics
Gen II polyaspartics – engineering performance

Benefits of Gen II Isocyanate

• More robust in high temperature and humidity
• Increased the recoat window from days to months
• Improved resistance to water
• Favorable mix ratio
• Improved ASTM 5894 cyclic salt spray/QUV
Gen II – Reducing Humidity Sensitivity

Cure Time at Elevated Conditions

- **Gen II**
 - 95°F / 90% RH
 - 77°F / 88% RH
 - 72°F / 50% RH

- **Gen I**
 - 72°F / 50% RH
Gen II – Improved Recoat Window

1 year in-field recoat in Baytown, TX

MCU Zinc Rich Primer
Gen II Polyaspartic Topcoat

Inorganic Zinc Rich Primer
Gen II Polyaspartic Topcoat

Pull off adhesion 1000-2400 PSI

Power wash @ 3000 PSI with 0° rotary tip 6-inch stand off distance
Gen II – Improved Water Resistance

Gen I

Gen II

4 days in Cleveland condensing cabinet
Gen II – Improved Cyclic Salt Spray/QUV

Inorganic Zinc Primer (3-4 mils)
Polyaspartic Topcoat (6-9 mils)

Gen I

MCU Zinc Primer (3-4 mils)
Polyaspartic Topcoat (6-9 mils)

Gen I

Gen II

Gen I

Gen II

7056 hours ASTM D 5894

7056 hours ASTM D 5894
Gen II – Adhesion to OZ and IOZ

<table>
<thead>
<tr>
<th></th>
<th>MCU Zinc Rich</th>
<th></th>
<th>Inorganic Zinc Rich</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NH-1420/NH-1521/XP-2763</td>
<td>70%</td>
<td>30%</td>
<td>NH-1420/NH-1521/XP-2763</td>
<td>70%</td>
</tr>
</tbody>
</table>
Traditional PAE Concrete Coating

100 g/l Guide Formula - Flooring

<table>
<thead>
<tr>
<th>Raw Material</th>
<th>Weight</th>
<th>Volume</th>
<th>Weight Solids</th>
<th>Volume Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAE 2</td>
<td>15.24</td>
<td>1.73</td>
<td>15.24</td>
<td>1.73</td>
</tr>
<tr>
<td>PAE 3</td>
<td>30.49</td>
<td>3.47</td>
<td>30.49</td>
<td>3.47</td>
</tr>
<tr>
<td>Aldimine</td>
<td>6.10</td>
<td>0.84</td>
<td>6.10</td>
<td>0.84</td>
</tr>
<tr>
<td>Byk-306</td>
<td>0.37</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>Byk-A 530</td>
<td>0.74</td>
<td>0.11</td>
<td>0.04</td>
<td>0.00</td>
</tr>
<tr>
<td>Ektaprop EEP</td>
<td>8.30</td>
<td>1.05</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SubTotal I</td>
<td>61.25</td>
<td>7.24</td>
<td>51.92</td>
<td>6.04</td>
</tr>
<tr>
<td>Component II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDI Trimer</td>
<td>38.75</td>
<td>4.04</td>
<td>38.75</td>
<td>4.04</td>
</tr>
<tr>
<td>SubTotal II</td>
<td>38.75</td>
<td>4.04</td>
<td>38.75</td>
<td>4.04</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>11.28</td>
<td>90.67</td>
<td>10.08</td>
</tr>
</tbody>
</table>

Theoretical Results

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt/Gal</td>
<td>8.87</td>
</tr>
<tr>
<td>Mix Ratio (volume)</td>
<td>1.79 : 1</td>
</tr>
<tr>
<td>NCO:OH</td>
<td>1.07</td>
</tr>
<tr>
<td>Theoretical VOC</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Property

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry time</td>
<td>4 hours</td>
</tr>
<tr>
<td>Working Time / Potlife</td>
<td>5-10 minutes 30 minutes</td>
</tr>
<tr>
<td>Taber</td>
<td>60 mg loss</td>
</tr>
<tr>
<td>Weathering QUV-A 2000 hours</td>
<td>~98% retention</td>
</tr>
<tr>
<td>Tensile</td>
<td>~5000 psi</td>
</tr>
<tr>
<td>Elongation</td>
<td>~5%</td>
</tr>
<tr>
<td>Hot tire marking</td>
<td>No marking</td>
</tr>
</tbody>
</table>
Next Generation PAE Concrete Coating

<table>
<thead>
<tr>
<th>Property</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry time</td>
<td>4 hours</td>
</tr>
<tr>
<td>Working Time / Potlife</td>
<td>10-15 minutes 30-40 minutes</td>
</tr>
<tr>
<td>Taber</td>
<td>80 mg loss</td>
</tr>
<tr>
<td>Weathering QUV-A 2000 hours</td>
<td>~90% retention</td>
</tr>
<tr>
<td>Tensile</td>
<td>~3500 psi</td>
</tr>
<tr>
<td>Elongation</td>
<td>~3%</td>
</tr>
<tr>
<td>Hot tire marking</td>
<td>No marking</td>
</tr>
</tbody>
</table>
Side by Side Comparison

<table>
<thead>
<tr>
<th>Property</th>
<th>Traditional Aspartate</th>
<th>Next Generation Aspartate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry time</td>
<td>4 hours</td>
<td>4 hours</td>
</tr>
<tr>
<td>Working Time / Potlife</td>
<td>5-10 minutes 30 minutes</td>
<td>10-15 minutes 40 minutes</td>
</tr>
<tr>
<td>Taber</td>
<td>60 mg loss</td>
<td>80 mg loss</td>
</tr>
<tr>
<td>Weathering QUV-A 2000 hours</td>
<td>~98% retention</td>
<td>~90% retention</td>
</tr>
<tr>
<td>Tensile</td>
<td>~5000 psi</td>
<td>~3500 psi</td>
</tr>
<tr>
<td>Elongation</td>
<td>~5%</td>
<td>~3%</td>
</tr>
<tr>
<td>Hot tire marking</td>
<td>No marking</td>
<td>No marking</td>
</tr>
</tbody>
</table>
Final Points

• Proven performance

• High throughput

• More robust Gen II
Acknowledgements

Ahren Olsen
Kurt Best
Thomas Baeker
QUESTIONS?

Mike Jeffries
Mike.Jeffries@Bayer.com
412-777-4950
Polyaspartics for Flooring and Concrete Coatings
Floor Coating Market

Professionally applied high-performance floor coatings market

- Heavy Duty 75%
- Light Duty 15%
- Decorative 10%

Source: P.D. Lovett & Co., Skiest, Industry Experts
Case History – Disney WWS Stadium

Disney Wide World of Sports Stadium - Orlando, FL

Contractor: Shield Co.

- 125,000 square feet
- Disney holds all their sites to Title 10 compliance
- Required a flexible concrete coating with low- to zero-VOC
- Architectural and Facilities Engineering preferred this smart solution for VOC compliance as well as proven long term durability
- 3-coat system with a 2K moisture-resistant epoxy primer and two coats of polyaspartic
Ave Maria University – Naples, FL

Architect: Cannon Design

General Contractor: Suffolk and Kraft

- Initial project was spec’d in marble but proved to be too costly
- 70,000 square feet to be coated
- A durable, low-VOC, and ADA-compliant floor coating system with the look of aged leather was desired
- Decorative ChemTone Acid stain was applied, followed by zero-VOC clear polyaspartic topcoat
- Very fast cure allowed trades back in the area quickly
Case History – Beau Catcher Tunnel

Beau Catcher Tunnel: Asheville, NC

- 12 mils white polyaspartic top coat
- Aromatic polyurea liner
- Completed in 1996
- Remains in service
Gen II – Hot Tire Resistance

Concrete Sample
• Acid Etched
• Room Temp

Tire Preparation
• Wet Sample
 • Soaked in 140°F, 2 hrs
• Dry Sample
 • Baked at 140°F, 2 hrs

Tire Type
• High Performance – P
• Normal - C
Gen II – Hot Tire Resistance

Clamped Setup
- 250 psi

Wet Sample
Dry Sample
Duration – 2 hrs
Hot Tire Testing - Results

Control - Before

Control - After

Next Gen - After