| Connect Follow us on Twitter Like us on Facebook
About | Subscribe | Advertise


Learn while you earn.

Paint and Coatings Industry News

Main News Page

New Concrete May Extend Bridge Life

Wednesday, February 6, 2013

More items for Coating Materials

Comment | More

A new concrete material that uses lightweight aggregates to absorb internal moisture that inevitably seeps in over time is fast finding a home in the decks of Indiana's newest bridges.

Developed by researchers at Purdue University, the new material is called "internally cured" high-performance concrete, and transportation officials have already begun specifying it.

Photos and video: Purdue University

Purdue University graduate students (from left) Paul Imbrock, Kambiz Raoufi and John Schlitter pour concrete for a test specimen in research to improve Indiana's bridges.

Monroe County, IN, has already decided to specify the new mix on all future bridges, officials say. The Indiana Department of Transportation (INDOT) has specified it for four bridge projects that are being built this year, starting with the State Road 933 Bridge in St. Joseph County.

Extending Bridge Life

"This material will reduce maintenance costs and allow bridge decks to last longer," said project leader W. Jason Weiss Ph.D., a professor of civil engineering and director of Purdue's Pankow Materials Laboratory.

"Our testing indicates that internally cured high-performance concrete experiences substantially less cracking and concrete damage caused by deicing salt and, when properly designed, the service life of bridge decks can be greatly extended."

The Joint Transportation Research Program, a partnership between INDOT and Purdue, worked with Weiss to create specifications for implementing the internally cured high-performance concrete.

Dr. W. Jason Weiss State Road 933 Bridge

The project led by Dr. Jason Weiss (left) at Purdue University may dramatically extend bridge life. INDOT has already specified the material for use on restoration of the State Road 933 Bridge in northern Indiana (right).

"We anticipate these relatively minor changes to our concrete specifications [will] substantially extend the life of our bridges," said Troy Woodruff, INDOT's chief of staff. "That means fewer traffic delays due to bridge maintenance and repair, and much lower expense."

How it Works

The project uses lightweight aggregates—typically made from expanding clay, shale, slate or slag—that pull water out of the material as it hydrates, according to a university video on the project.

Concrete is normally made by mixing Portland cement with water, sand and stone. As it cures, water helps the concrete mixture gain strength by reacting with the cement, the university notes. Traditionally, curing is promoted by adding water on top of the bridge deck surface.

The new internal curing technology, however, "provides additional water pockets inside the concrete, enhancing the reaction between the cement and water, which adds to strength and durability," the university says. The water pockets are formed by using lightweight fine aggregate to replace some of the sand in the mixture.

"A key step in the process is to pre-wet the lightweight aggregate with water before mixing the concrete," Weiss said. "Nearly five years of research has been performed to fully understand how to proportion these mixtures and the level of performance that can be expected."

Specifying and Testing

The team worked with Monroe County in specifying the material for a bridge built in 2010 and has been studying how that bridge performs compared to an adjacent bridge built the same year using conventional concrete.

Purdue University video

Aggregates like clay and slag replace some of the sand in the concrete and are able to absorb moisture from within, Purdue University researchers explain in this video.

"The control bridge has developed three cracks, but no cracks have developed in the internally cured bridge," Weiss said. "Tests also show the internally cured concrete is approximately 30 percent more resistant to salt ingress."

Purdue says Weiss has been working with other states outside Indiana to accelerate their use of the material. The composition of the material varies from state to state, depending on which materials are locally available and the design of bridge deck components.

Performance and an Environmental Plus

Supplementing the concrete mixture with materials like silica fume, fly ash and limestone also keeps them out of the waste stream and reduces the use of raw materials.

"We just finished a project for the Federal Highway Administration where we showed that we can take 60 percent of the cement out of a typical bridge deck concrete and obtain similar, if not better, performance for bridges by taking advantage of the benefits internal curing provides," Weiss said.

In additional to INDOT and the JTRP, sponsors and contributors to the work include the Indiana Local Technical Assistance Program, the National Institute of Standards and Technology, Lafarge North America, and the Expanded Shale Clay and Slate Institute.

The Purdue-INDOT collaboration "not only benefits Indiana taxpayers, but also provides valuable full-scale living laboratories for study by Purdue students and faculty," said Jay Wasson, INDOT deputy commissioner for engineering and asset management

"As further field data are collected by Professor Weiss, we anticipate even broader deployment of this concrete specification."


Tagged categories: Beneficial reuse; Bridges; Cement; Coal slag; Concrete; Concrete repair; Durability; Renewable raw materials

Comment from chris atkins, (2/6/2013, 4:43 AM)

Isn't expanding aggregate bad? eg alkali aggregate reaction chris

Comment from Rogers Karr, (2/6/2013, 8:07 AM)

Chris, this is not an expanding aggregate issue. Expanded aggregates are stable after they are made by heating raw clays or shale in a kiln where they expand. They are more porous than natural aggregates, hence the lower unit weights. Evidently, the free water in the pores is available for hydration of the cement. This idea of internal curing certainly differs from everything I've ever been told about making durable concrete.

Comment Join the Conversation:

Sign in to our community to add your comments.

Mitsubishi Gas Chemical America
Performance Amine 1,3-BAC

A highly reactive cycloaliphatic diamine offering superior performance. Reasonable cost and curing efficacy makes it suitable for all types of epoxy resin applications.

Wasser High-Tech Coatings Inc.
Polyflex® Polyurea Linings

Polyflex ™ new Polyurea Geotextile Membrane System has been specifically engineered to protect the environment in containment applications.

New resins from BASF will have metals loving water:

Excellent corrosion resistance, low VOC, high gloss, thin films

Jotun Paints Inc.
Jotachar JF750 - The Time Saving Solution

The only mesh free solution for jet fire scenarios. Jotachar saves installation time and material costs - the next generation of epoxy passive fire protection.

Vector Technologies Ltd.
The Original Performance Proven Vacuum Solutions

Vecloader DV 145, 350hp 6200 CFM & 28’’hg. For those big jobs, choose Vector for the most powerful trailer mounted vacuum in the industry today. 800-832-4010, 414-247-7100.

HoldTight Solutions Inc.

Our HoldTight®102 salt remover & flash rust preventer prevents flash rust by removing surface contaminants. It has no equal; only wannabees.
Contact us for your
nearest distributor.
(800) 319.8802

Safway Services
Superior Suspended Access with QuikDeck®

Get improved platform stability with QuikDeck®. Open workspace designed for fast installation and safety. Easily moved to reduce cost. Safe to the environment.

Hempel (USA) Inc.
Hempel Protective Coatings

Wider range of Hempel coatings now meet NORSOKs exacting M-501 standard. Proven high performance to protect your assets. Contact us at to find out more.

Seymour Midwest
Coating Application Tools & Supplies

Visit our “Where to Buy” site to find a local paint or tool supplier near you. Click here for a chance to win $500 of Tools & Supplies. 1(844)739-6687

Sherwin-Williams Protective & Marine Coatings

With 4,000 distribution points and 3,700+ years of experience, Sherwin-Williams delivers the products, support and expertise you need, right where you need it.

Technology Publishing

The Technology Publishing Network

The Journal of Protective Coatings & Linings (JPCL) PaintSquare
Durability + Design Paint BidTracker

EXPLORE:      JPCL   |   PaintSquare News   |   Interact   |   Buying Guides   |   Webinars   |   Resources   |   Classifieds
REGISTER AND SUBSCRIBE:      Free PaintSquare Registration   |   Subscribe to JPCL   |   Subscribe to PaintSquare News
MORE:      About   |   Privacy policy   |   Terms & conditions   |   Site Map   |   Search   |   Contact Us

© Copyright 2000-2016, Technology Publishing / PaintSquare, All rights reserved
2100 Wharton Street, Suite 310, Pittsburgh PA 15203-1951; Tel 1-412-431-8300; Fax 1-412-431-5428; E-mail