Follow us on Twitter Follow us on LinkedIn Like us on Facebook Follow us on Instagram Visit the TPC Store
Search the site




Coatings Industry News

Main News Page

Scientists Unveil Ice-Melting Coating

Tuesday, March 8, 2016

Comment | More

Researchers at Rice University are working on developing a composite coating to help remove ice in cold-weather applications ranging from wind turbines to aircraft wings.

The research team tested its epoxy coating infused with graphene nanoribbons on a helicopter blade to prove its ability to melt ice under certain conditions, Rice University announced.

“Applying this composite to wings could save time and money at airports where the glycol-based chemicals now used to de-ice aircraft are also an environmental concern,” chemist James Tour said.

helicopter blade, de-icer
Images: Tour Group, Rice University

Scientists at Rice University tested their epoxy coating infused with graphene nanoribbons on a helicopter blade to prove its ability to melt ice under certain conditions.

The team, who performed their work in Tour’s lab, recently published their findings as a paper titled “Composites of Graphene Nanoribbon Stacks and Epoxy for Joule Heating and Deicing of Surfaces” in the ACS Applied Materials and Interfaces journal of the American Chemical Society.

Earlier Developments

In earlier research, Rice University invented the process of “unzipping” nanotubes—that is, splitting carbon nanotubes to make flat nanoribbons, a technique that makes it possible to produce the ultrathin ribbons in bulk quantities. This process is also more inexpensive than producing large sheets of grapheme.

The resulting nanotubes are highly conductive, and when used in composites are able to interconnect and conduct electricity across the material with much lower loads.

The school lab’s previous tests showed the nanoribbon films could be used to de-ice radar domes and glass, as the films are transparent.

Testing Ice Removal

When testing the new application in the lab, scientists, led by graduate student Abdul-Rahman Raji, used a graphene nanoribbon-infused epoxy containing 5 percent nanoribbons at most.

They spread a thin coat of the composite on a section of helicopter rotor blade, embedded between the abrasion shield on the leading edge of the blade and the blade itself.

When the blade was chilled to minus-4-degree Fahrenheit, ice formed at a centimeter thick. To test the de-icing capabilities, a small electrical charge was applied that enabled the coating to deliver electrothermal heat, called Joule heating, which effectively melted the ice.

They were able to heat the composite to more than 200 degrees Fahrenheit and said it remained “robust” in temperatures up to nearly 600 degrees Fahrenheit.

Blade coating process, Rice University

The researchers spread a thin coat of the composite on a section of helicopter rotor blade, embedded between the abrasion shield on the leading edge of the blade and the blade itself.

For wings or blades in motion, Tour said, the thin layer of water that forms first between the heated composite and the surface should be enough to loosen ice and allow it to fall off without having to melt completely.

In addition to applications as a de-icer on aircraft wings, wind turbine blades, transmission lines and other surfaces exposed to cold temperatures, Tour noted that the coating may also be used on aircraft to deliver a layer of protection against lightning strikes and provide an extra layer of electromagnetic shielding.

About the Researchers

Raji and Tour’s coauthors on the paper include Rice undergraduates Tanvi Varadhachary and Kewang Nan; graduate student Tuo Wang; postdoctoral researchers Jian Lin and Yongsung Ji; alumni Yu Zhu of the University of Akron and Bostjan Genorio of the University of Ljubljana, Slovenia; and research scientist Carter Kittrell.

Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of computer science and of materials science and nanoengineering.

The Air Force Office of Scientific Research and Carson Helicopter supported the research.


Tagged categories: Coatings Technology; Colleges and Universities; Research and development; Specialty functions; Transmission Towers; Wind Towers

Comment Join the Conversation:

Sign in to our community to add your comments.

Mitsubishi Gas Chemical America
Performance Amine 1,3-BAC
A highly reactive cycloaliphatic diamine offering superior performance. Reasonable cost and curing efficacy makes it suitable for all types of epoxy resin applications.

Carboline Company
New product: Carbozinc® 608 HB
Introducing a new high build zinc-rich primer that can save you time and money by eliminating the epoxy intermediate coat!

SAFE Systems, Inc.
SAFE Systems'
Blast Lights &
Deadman Switches
Halogen or LED blast lights available with our NEW urethane bumper. Switches available in many colors for color coding your hoses.

Industrial Vacuum Equipment Corp.
Hurricane Vacuums
& Dust Collectors
Vacuum and dust collector hose, filters and related accessories.

Tarps manufacturing, Inc.
QUALITY MADE IN AMERICA —Available near you!
CLICK to get a behind-the-scenes look at how Tarps Manufacturing makes the highest-quality tarps right here in the USA — available nationwide.

HoldTight Solutions Inc.
Our HoldTight®102 salt remover & flash rust
preventer prevents flash
rust by removing surface contaminants. Contact us
for your nearest distributor.
(800) 319.8802

New resins from BASF will have metals loving water!
Excellent corrosion resistance, low VOC, high gloss, thin films 800-231-7868

Jotun Paints Inc.
Jotun Jotachar 1709
Mesh-free passive fire protection epoxy designed to protect against hydrocarbon pool fire scenarios for up to four hours as defined in the ANSI/UL1709 standard.

ARC / A.W. Chesterton Company
ARC HT-S is a 100% solids glass/ceramic reinforced novolac epoxy lining for high temperature aqueous cold wall corrosion conditions. ARC HT-S is easily applied by roller, brush, squeegee, or airless spray.

Blastox/The TDJ Group, Inc.
Blastox® - One Step Lead Abatement
Sandblast additive delivered to jobsite pre-blended to eliminate hazardous abrasive wastes. Why mix, meter or apply at the job-site? Blast with ease and
Let your painters paint!


Technology Publishing Co., 1501 Reedsdale Street, Suite 2008, Pittsburgh, PA 15233

TEL 1-412-431-8300  • FAX  1-412-431-5428  •  EMAIL

The Technology Publishing Network

Durability + Design PaintSquare the Journal of Protective Coatings & Linings Paint BidTracker

EXPLORE:      JPCL   |   PaintSquare News   |   Interact   |   Buying Guides   |   Webinars   |   Resources   |   Classifieds
REGISTER AND SUBSCRIBE:      Free PaintSquare Registration   |   Subscribe to JPCL   |   Subscribe to PaintSquare News
MORE:      About   |   Privacy Policy   |   Terms & Conditions   |   Support   |   Site Map   |   Search   |   Contact Us